第2種スターリング数
Stirling numbers of the second kind
n\k | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 1 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 1 | 7 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 1 | 15 | 25 | 10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 1 | 31 | 90 | 65 | 15 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 1 | 63 | 301 | 350 | 140 | 21 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 1 | 127 | 966 | 1,701 | 1,050 | 266 | 28 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 1 | 255 | 3,025 | 7,770 | 6,951 | 2,646 | 462 | 36 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 1 | 511 | 9,330 | 34,105 | 42,525 | 22,827 | 5,880 | 750 | 45 | 1 | 0 | 0 | 0 | 0 | 0 |
11 | 1 | 1,023 | 28,501 | 145,750 | 246,730 | 179,487 | 63,987 | 11,880 | 1,155 | 55 | 1 | 0 | 0 | 0 | 0 |
12 | 1 | 2,047 | 86,526 | 611,501 | 1,379,400 | 1,323,652 | 627,396 | 159,027 | 22,275 | 1,705 | 66 | 1 | 0 | 0 | 0 |
13 | 1 | 4,095 | 261,625 | 2,532,530 | 7,508,501 | 9,321,312 | 5,715,424 | 1,899,612 | 359,502 | 39,325 | 2,431 | 78 | 1 | 0 | 0 |
14 | 1 | 8,191 | 788,970 | 10,391,745 | 40,075,035 | 63,436,373 | 49,329,280 | 20,912,320 | 5,135,130 | 752,752 | 66,066 | 3,367 | 91 | 1 | 0 |
15 | 1 | 16,383 | 2,375,101 | 42,355,950 | 210,766,920 | 420,693,273 | 408,741,333 | 216,627,840 | 67,128,490 | 12,662,650 | 1,479,478 | 106,470 | 4,550 | 105 | 1 |
第2種スターリング数 {n, k}
大きさnの集合を、その和集合が全体集合となるk個の互いに素な空でない部分集合に分割する方法の個数。
{n, k} = {n-1, k-1} + k{n-1, k}
{0, 0} = 1 , {n, 0} = 0 (n > 0)
xn = {n,0} + {n,1}x + {n,2}x(x-1) + {n,3}x(x-1)(x-2) + … + {n,n}x(x-1)(x-2)…(x-n+1)
第2種スターリング数を使えば、ある個数の頂点の着色が何通りになるか計算できます。 たとえば、点が10個で4色以内では、
{10, 1}+{10, 2}+{10, 3}+{10, 4} = 1+511+9330+34105 = 43947
で、43,947通りになります。